推薦系統簡介
推薦系統的目的是向使用者提供有價值的項目(items),例如商品、新聞和串流影片,以幫助他們在大量資訊中找到有價值的內容。我們通常研究的推薦系統是個人化的,根據個人或特定使用者群體的偏好調整推薦項目。相比之下,大眾化的推薦系統方法通常較容易實現,例如top10 熱門項目。儘管這種方法在特定情境下可能有效,但它並不是推薦系統主要討論的議題。個人化推薦最簡單的形式可以用一排序後的項目列表呈現(最有興趣->最沒興趣),系統透過使用者的偏好(對某項目的評分、是否查看某項目的詳細資訊)或某些條件排序。最早的推薦系統透過尋找和被推薦使用者(目標)相似的使用者,並將相似使用者關注或選擇的項目推薦給目標,該方法即為協同過濾(Collaborative filtering)。而現代人日常要接受的資訊繁多2,如何令使用者可以方便的取得有價值的資訊已成為重要問題,推薦系統很好的解決了此問題。
更新計畫與週期
可能兩周一更
本書架構
Part I Basic Techniques
- Data Mining Methods for Recommender Systems 🚧
- Content-based Recommender Systems: State of the Art and Trends 🚧
- A Comprehensive Survey of Neighborhood-based Recommendation Methods 🚧
- Advances in Collaborative Filtering 🚧
- Developing Constraint-based Recommenders 🚧
- Context-Aware Recommender Systems 🚧
Part II Applications and Evaluation of RSs
- Evaluating Recommendation Systems 🚧
- A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment 🚧
- How to Get the Recommender Out of the Lab? 🚧
- Matching Recommendation Technologies and Domains 🚧
- Recommender Systems in Technology Enhanced Learning 🚧
Part III Interacting with Recommender Systems
- On the Evolution of Critiquing Recommenders 🚧
- Creating More Credible and Persuasive Recommender Systems: The Influence of Source Characteristics on Recommender System Evaluations 🚧
- Designing and Evaluating Explanations for Recommender Systems 🚧
- Usability Guidelines for Product Recommenders Based on Example Critiquing Research 🚧
- Map Based Visualization of Product Catalogs 🚧
Part IV Recommender Systems and Communities
- Communities, Collaboration, and Recommender Systems in Personalized Web Search 🚧
- Social Tagging Recommender Systems 🚧
- Trust and Recommendations 🚧
- Group Recommender Systems: Combining Individual Models 🚧
Part V Advanced Algorithms
- Aggregation of Preferences in Recommender Systems 🚧
- Active Learning in Recommender Systems 🚧
- Multi-Criteria Recommender Systems 🚧
- Robust Collaborative Recommendation 🚧